1.1. 概述
最早提出“大数据”时代到来的是全球知名咨询公司麦肯锡,麦肯锡称:“数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。”
随着互联网快速发展、智能手机以及“可佩带”计算设备的出现,我们的行为、位置,甚至身体生理数据等每一点变化都成为了可被记录和分析的数据。这些新技术推动着大数据时代的来临,各行各业每天都在产生数量巨大的数据碎片,数据计量单位已从Byte、KB、MB、GB、TB发展到PB、EB、ZB、YB甚至BB来衡量。
今天的大数据分析市场与几年前的市场截然不同,正是由于海量数据的暴增,未来十年,全球各行各业都将发生变革、创新和颠覆。
未来十年大数据分析的发展趋势
公有云优于私有云的优势继续扩大。公有云正逐步成为客户群的首选大数据分析平台。这是因为公有云解决方案比内部部署堆栈更为成熟,增加了更丰富的功能,且成本日益增加。另外,公有云正在增加其应用程度编程接口生态系统,并加快开发管理工具的速度。
1.2. 大数据分析
当数据分析遇到大数据时代,于是就产生了完美的契合:大数据分析。你可以理解大数据分析是指对规模巨大的数据进行分析。大数据被称为当今最有潜质的IT词汇,接踵而来的数据挖掘、数据安全、数据分析、数据存储等等围绕大数据的商业价值的利用逐渐成为行业人士争相追捧的利润焦点。随着大数据时代的来临,大数据分析也应运而生。
加速融合以企业实现商业价值。用户开始加快将孤立的大数据资产融合到公有云的速度。而公有云厂商也在优化困扰私有大数据架构的跨业务孤岛。同样重要的是,云数据和本地数据解决方案正融合到集成产品中,旨在降低复杂性并加快实现业务价值。更多的解决方案提供商正在提供标准化的API,以简化访问,加速开发,并在整个大数据解决方案堆栈中实现更全面的管理。
大数据初创公司将越来越复杂的AI注意应用程序推向市场。过去几年来,许多新的数据库,流处理和数据初创公司加入到市场中。不少公司也开始通过AI的解决方案加入到市场竞争中。其中大部分创新方案都是为公有云或混合云部署而设计的。
新兴解决方案逐渐替代传统方法。越来越多的大数据平台供应商将涌现出融合物联网、区块链和流计算的下一代方法。这些大数据平台主要针对机器学习、深度学习和人工智能管理端到端devops管理进行优化。此外,不少大数据分析平台正在为AI微服务架构设计边缘设备。
打包的大数据分析应用程序正变得越来越广泛。未来十年,更多服务将自动调整其嵌入式机器学习、深度学习和AI模型,以持续提供最佳业务成果。这些服务将纳入预先训练的模式,客户可以调整和扩展到自己的特定需求。
1.3、数据分析部署的障碍与难点
成本高昂且效率低下。对于许多IT专业人员来说,大数据分析管理和治理流理仍然过于孤立,成本高昂且效率低下。供应商需要构建预先打包的流程,帮助大型专业人员团队更有效、快速和准备的管理数据及分析。
缺乏自动化功能。大数据分析应用程序的开发和运营仍然过于耗时且需要手动。供应商需要加强其的自动化功能,以确保提高用户技术人员的生产力,同时确保即使是低技能人员也能处理复杂业务。
大数据时代已经来临,并逐渐渗透到各个行业领域之中。对于企业IT来说,开始将更多的大数据分析开发工作迁移到公有云环境中,这也将加速AWS,微软,谷歌等云厂商提供的快速成熟且低成本产品的能力。
1.4、大数据时代的趋势
三大趋势
1、真实的机器学习
我们坚信,机器学习、人工智能未来很快会接管世界,至少是人类的大部分工作。然而现实正一步步向我们推进,我们发现机器学习能最有效地成为人类的助手而不是替代者。人类工作和机器学习结合才是最好的结果。
2、从数据采集者到数据生产者
过去,企业一直专注于挖掘自己拥有的数据,并发现和收集其他组织拥有的数据。但现在,企业需要一些战略转移,有意识的创造所需的数据,用于销售新产品和服务,满足业务目标的需要。例如一家体检公司收集病人生活方式和保险公司投保条件信息,并以此为基础提供个性化的客户服务和指导。这样的公司会走得更远,针对客户的需要,有针对性的收集和提供数据。
3、优化客户体验的新方法
在大数据领域最后的几个攻坚战之一就是提升用户的体用体验了。以现在的趋势看来,使用自然语言处理分析现有数据是个不错的办法,例如在社交媒体上的进行情感分析,会比较容易抓取到用户的好恶,从而进行产品的改进。